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An Example from Richardson (1998)
Suppose we conduct a randomized trial of an ineffective drug that causes
unpleasant side-effects:
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A: Treatment assignment (randomized)
E : Side-effects of the drug
H: Patient’s general health level
R: Recovery speed
S: Whether the patient stays in the study
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An Example from Richardson (1998)
Suppose we conduct a randomized trial of an ineffective drug that causes
unpleasant side-effects:

A

E

H

R

S

Apply the d-separation criterion (assuming faithfulness):

A
d
̸⊥ R | S ⇒ XA ⊥̸⊥ XR | XS

Patients in the treatment group who remain in the study tend to be healthier
than those in the control group, since unhealthy patients taking the drug are
more likely to drop out!
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Why Use Ancestral Graphs
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Key idea: It is not possible to accurately represent a causally insufficient system
using a Directed Acyclic Graph (DAG) over observed variables alone.
Ancestral graphs allow us to capture the influence of latent (selection) variables in
the causal process that generates the data.
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Maximal Ancestral Graphs
Maximal Ancestral Graphs (MAGs), introduced by Richardson and Spirtes
(2002), provide an abstract representation of DAGs in the presence of
latent (selection) variables.

Definition (MAG)
A MAG is a mixed graph H with edge types {→,←,↔,−−}, satisfying the
following conditions:

1 Simplicity: At most one edge exists between any two distinct nodes,
and no node has a self-loop.

2 Ancestrality:
If H contains an anterior path a −−∗ · · · −−∗ b for a ̸= b, then it must
not contain an edge a←∗ b.
If H contains an undirected edge a −− b, then no node c satisfies
c ∗→ a.

3 Maximality: No inducing path exists between any two non-adjacent
nodes in H.
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Representing DAGs by MAGs

MAGs encode both ancestral relations and d-separation properties of
the DAGs they represent.

Definition (Representing Rules)
Let H be a MAG with nodes V , and let G be a DAG with nodes
V + = V ∪ L ∪ S. We say that H represents G given S if all of the
following conditions hold:

1 Two distinct nodes a, b ∈ V are adjacent in H if and only if there
exists an inducing path between a and b given L ∪ S in G .

2 If H contains the edge a←∗ b, then a /∈ AncG({b} ∪ S).
3 If H contains the edge a −−∗ b, then a ∈ AncG({b} ∪ S).
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Example: a MAG Representing DAGs
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Figure: An example MAG H (left) that represents DAG G1 (middle) given
S = {sbc} and DAG G2 (right) given S = {sa}.
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Why MAGs Matter

MAGs abstract the causal structure of DAGs when latent (selection)
variables are present.
They encode ancestral relations and d-separations among observed
variables.
MAGs provide the theoretical foundation for proving the soundness
and completeness of the FCI algorithm for causal discovery.
Their structure supports formal reasoning, including a version of
do-calculus tailored to partial observability.
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Limitations of MAGs

A fundamental limitation of MAGs is their inability to represent cyclic
causal relationships, making them unsuitable for systems with feedback
mechanisms.

Example: Arctic Climate Feedback Loop

T I

S

T : Temperature
I: Amount of sea ice
S: Amount of sunlight absorbed
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Modeling Cyclic Causality with Simple SCMs

Structural Causal Models (SCMs) can naturally model cycles. We consider
here the subclass of simple SCMs (Bongers et al., 2021).

Simple SCMs extend acyclic SCMs to allow for (weak) cyclic causal
relations while preserving the convenient properties of acyclic SCMs.

Definition (Simple SCM)
An SCM is called simple if any subset of its structural equations can be
solved uniquely for its associated variables in terms of the other variables
that appear in these equations.
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d-Separation vs. σ-Separation

In the general cyclic case, the notion of d-separation is too strong (Spirtes,
1995). A solution is to replace d-separation with σ-separation.

Definition (σ-separation (Bongers et al., 2021))
We say that a path q0 ∗−−∗ · · · ∗−−∗ qn in DMG G is σ-blocked by Z if:

1 q0 ∈ Z or qn ∈ Z , or
2 it contains a collider qk /∈ AncG(Z ), or
3 it contains a non-collider qk ∈ Z that points to a neighboring node on

the path in another strongly connected component.
If all paths in G between any node in set X and any node in set Y are
σ-blocked by a set Z , we say that X is σ-separated from Y by Z , and we
write X

σ
⊥ Y | Z .

σ-separation is different from d-separation in general, but reduces to
d-separation in the acyclic case.

Binghua Yao & Joris M. Mooij Oral Presentation for UAI 2025 10 / 21



Our Contribution: σ-MAGs

We generalize MAGs to a new class of graphs called σ-MAGs, which are
capable of representing richer Directed Mixed Graphs (DMGs) that include
feedback loops.

For σ-MAGs, we develop a comprehensive theoretical framework:
We define a tailored m-separation criterion for σ-MAGs, which
corresponds to the σ-separation used in DMGs.
We build on the ideas of Spirtes and Richardson (1996) to
characterize Markov equivalence classes of σ-MAGs.
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Formal Definition

Definition (σ-MAG)
A σ-MAG is a mixed graph H with edge types {→,←,↔,−−}, satisfying
the following conditions:

1 Simplicity: At most one edge exists between any two distinct nodes,
and no node has a self-loop.

2 Ancestrality:
If H contains an anterior path a −−∗ · · · −−∗ b for a ̸= b, then it must
not contain an edge a←∗ b.
If H contains an undirected edge a −− b, then no node c satisfies
c ∗→ a.

3 σ-maximality:
Maximality: No inducing path exists between any two non-adjacent
nodes.
σ-completeness: If H contains a triple a ∗→ b −− c, then a and c
must be adjacent. Moreover, if b −− d is also present, then c and d
must be adjacent.
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Representing DMGs by σ-MAGs

σ-MAGs provide an abstract representation of (possibly cyclic) DMGs:

Definition (Representing Rules for σ-MAGs)
Let H be a σ-MAG with nodes V , and let G be a DMG with nodes
V + = V ∪ S. We say that H represents G given S if the following
conditions hold:

1 Two nodes a, b ∈ V are adjacent in H if and only if there exists an
inducing path a σ-inducing path between a and b given S in G .

2 If H contains the edge a←∗ b, then a /∈ AncG({b} ∪ S).
3 If H contains the edge a −−∗ b, then a ∈ AncG({b} ∪ S).
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Example: a σ-MAG Representing a DMG

v1 v2 v3

v4 v5

v6

v1 v2 v3

v4 v5

v6

s

A σ-MAG H (left) represents a DMG G (right) given S = {s}
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m-Separation in σ-MAGs

We generalize the classical m-separation criterion (Richardson and Spirtes,
2002) to σ-MAGs:

Definition (m-separation for σ-MAGs)
We say that a path q0 ∗−−∗ · · · ∗−−∗ qn in σ-MAG H is m-blocked by Z if:

1 it contains a collider qk /∈ AncH(Z ), or
2 it contains a non-collider qk ∈ Z , or
3 it contains a subpath of the form qk−1 ∗→ qk −− qk+1 or

qk−1 −− qk ←∗ qk+1.
If all paths in H between any node in set X and any node in set Y are
m-blocked by a set Z , we say that X is m-separated from Y given Z , and
we write X

m
⊥ Y | Z .
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Separation Equivalence

Theorem (Spirtes and Richardson (1996))
Let G be a DAG with nodes V + = V ∪ L ∪ S, and let H be a MAG with
nodes V that represents G given S. For all subsets X , Y , Z ⊆ V , the
following holds:

X
m
⊥
H

Y | Z ⇐⇒ X
d
⊥
G

Y | Z ∪ S.

Theorem (Separation Equivalence)
Let G be a DMG with nodes V + = V ∪ S, and let H be a σ-MAG with
nodes V that represents G given S. For all subsets X , Y , Z ⊆ V , the
following holds:

X
m
⊥
H

Y | Z ⇐⇒ X
σ
⊥
G

Y | Z ∪ S.
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m-Markov Equivalence

Two MAGs H1, H2 with the same nodes V are m-Markov equivalent if for
all subsets X , Y , Z ⊆ V , the following holds:

X
m
⊥
H1

Y | Z ⇐⇒ X
m
⊥
H2

Y | Z .

Theorem (m-Markov Equivalence (Spirtes and Richardson, 1996))
Two MAGs H1, H2 with the same nodes V are m-Markov equivalent if and
only if the following conditions hold:

1 H1 and H2 have the same adjacencies.
2 H1 and H2 have the same unshielded colliders.
3 Let π be a discriminating path for a node q in H1, and let π′ be the

corresponding path in H2. If π′ is also a discriminating path for q,
then q is a collider on π in H1 if and only if it is a collider on π′ in H2.
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Generalized m-Markov Equivalence

Two σ-MAGs H1, H2 with the same nodes V are m-Markov equivalent if
for all subsets X , Y , Z ⊆ V , the following holds:

X
m
⊥
H1

Y | Z ⇐⇒ X
m
⊥
H2

Y | Z .

Theorem (Generalized m-Markov Equivalence)
Two σ-MAGs H1, H2 with the same nodes V are m-Markov equivalent if
and only if the following conditions hold:

1 H1 and H2 have the same adjacencies.
2 H1 and H2 have the same unshielded colliders.
3 Let π be a discriminating path for a node q in H1, and let π′ be the

corresponding path in H2. If π′ is also a discriminating path for q,
then q is a collider on π in H1 if and only if it is a collider on π′ in H2.
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Discussion

The σ-MAG we propose extends MAGs to settings with cycles, offering
a solid foundation for future work in causal discovery.

Developing sound and complete extensions of the FCI algorithm
applicable to data generated by simple SCMs in the presence of
selection bias and feedback.
Serving as a key step towards a generalized do-calculus for FCI
outputs in settings that include both latent confounding and cyclic
causation.
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Bongers, S., Forré, P., Peters, J., and Mooij, J. M. (2021). Foundations of structural
causal models with cycles and latent variables. Annals of Statistics, 49(5):2885–2915.

Richardson, T. and Spirtes, P. (2002). Ancestral graph Markov models. The Annals of
Statistics, 30(4):962–1030.

Richardson, T. S. (1998). Chain graphs and symmetric associations. In Learning in
graphical models, pages 231–259. Springer.

Spirtes, P. (1995). Directed cyclic graphical representations of feedback models. In
Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI-95),
pages 491–499.

Spirtes, P. and Richardson, T. (1996). A polynomial time algorithm for determining
DAG equivalence in the presence of latent variables and selection bias. In Proceedings
of the 6th International Workshop on Artificial Intelligence and Statistics
(AISTATS-1996), pages 489–500.

Thank you for your attention!
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A Useful Lemma

Lemma (Fundamental Property of σ-MAGs)
Let H be a σ-MAG. If H contains a triple of the form a ∗→ b −− c, then the edge
between a and c is of the same type as the edge between a and b, and the
neighbors of b and c are complete.

a

b c =⇒

a

b c

a

b c

d

=⇒

a

b c

d
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